OUTLINE		EMPIRICAL EXERCISE	
00	00000	0000000	00

EUROZONE PRICES: A TALE OF CONVERGENCE AND DIVERGENCE

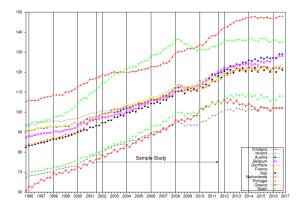
Alfredo Garcia-Hiernaux¹

Maria T. Gonzalez-Perez² David E. Guerrero³

<□> <□> <□> <□> < ⊇> < ⊇> < ⊇> < ⊇ < ○へ ∩ 1/17

¹ Universidad Complutense de Madrid

² Banco de España


³CUNEE

XXV Meeting of the Central Bank Researchers Network October 30, 2020

The views expressed in this paper are those of the author and do not necessarily represent those of the Bank of Spain.

OUTLINE		EMPIRICAL EXERCISE	
•0	00000	000000	00
QUARTER	LY PRICE LEVEL SERIES		

FIGURE: Price level series for EA-11: FI, IR, AU, BE, DE, FR, IT, NT, PT, GR, ES

EA-11: would it be convergence or divergence of prices and inflation since the EMU?

OUTLINE		Empirical Exercise	
00	00000	000000	00
OUTLINE			

• Theoretical Background:

- Definitions: inflation + relative prices (PCM and PCV)
- · Methodology: dynamics of relative prices + hypothesis testing

• Empirical exercise:

- HCPI for EA-11 from 2002-2011 (pre-Sovereign Debt crisis)
- · Conclude about PCM (absolute and relative) and PCV

• Main Results:

- We cannot find evidence of price/inflation convergence for some countries.
- Absolute PCM (P, π): FR/DE and IT/DE
- Relative PCM (π): PT/DE, PT/FR, BE/IT, AU/IT, DE/ES, AU/ES, NT/ES, BE/GR
- PCV only for IT/AU

• This paper:

- We provide a methodology based on the dynamics of relative prices to monitor the price level convergence dynamics in a monetary union.

- Our results set the bases for a further study (in progress) of PCM/PCV in the Eurozone after 2012.

00	●0000	0000000	00
DEFINITIONS	S: INFLATION		
$\pi_{i,t} \text{ is } I(0).$ $\bullet \pi_t = \pi_t^* + Purely mone$ $\bullet \tau_{i,j,t} = \ln$	etary phenomenon + driven by no $n(P_{i,t}/P_{j,t}) = \tau_{i,j,t}, \bullet \tau_{i,j,t} = 0$ otherwise, P_i, P_j "would wand	"steady" and "sustained" <i>n</i> -monetary shocks. No assump $\tau^*_{i,j,t} + \gamma_{i,j,t}$	

The permanent inflation component π_t^* is the expected variation of the price level in the long run, where \mathcal{F}_t denotes all information available at period t.

$$\pi_t^* = \lim_{k \to \infty} \mathbb{E}[\pi_{t+k} | \mathcal{F}_t]$$

DEFINITION

The permanent relative price component $\tau_{i,j,t}^*$ for country *i* with respect to country *j* is the expected (log) relative price level in the long run, formally:

$$\tau_{i,j,t}^* = \lim_{k \to \infty} \mathbb{E}[\tau_{i,j,t+k} | \mathcal{F}_t]$$

OUTLINE	THEORETICAL BACKGROUND
00	0000

EMPIRICAL EXERCISE

CONCLUDING REMARKS

DEFINITIONS: ASYMPTOTIC PRICE LEVEL CONVERGENCE IN MEAN

Asymptotic Price level Convergence in Mean

DEFINITION

For the asymptotic PCM, the price levels in countries i and j converge asymptotically if the permanent ratio component for country i with respect to country j is constant.

 $\lim_{k \to \infty} \mathbb{E}[\tau_{i,j,t+k} | \mathcal{F}_t] = \tau_{i,j}^*$

- If PCM and $\tau_{i,j}^* = 0$, P_i and P_j converge in an <u>absolute sense</u> (convergence as steady state)

- If PCM and $\tau_{i,j}^* \neq 0$, with $c \in \{\mathbb{R} - 0\}$, P_i and P_j converge in a <u>relative sense</u> (catching-up convergence)

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

OUTLINE THEO 00 000

THEORETICAL BACKGROUND

EMPIRICAL EXERCISE

CONCLUDING REMARKS

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DEFINITION: ASYMPTOTIC PRICE LEVEL CONVERGENCE IN VARIANCE

Asymptotic Price level Convergence in Variance

- PCM holds for (P_i, P_j) , with $i \neq j$. - The variance of the (stationary) log-ratio of nominal prices must tend to a constant (zero).

DEFINITION

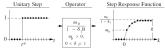
If nominal prices P_i and P_j are I(1), the inflation rates π_i , π_j stationary, and PCM is fulfilled, then PCV holds and the price levels in countries *i* and *j* converge asymptotically if

$$\lim_{k \to \infty} \mathbb{E}[(\tau_{i,j,t+k} - \tau_{i,j}^*)^2 | \mathcal{F}_t] = \nu_{i,j}^* \ge 0$$

holds for all t and with probability 1, where $\nu_{i,j}^*$ is a <u>constant</u> that represents the asymptotic expected variance of the relative prices.

OUTLINE	THEORETICAL BACKGROUND	EMPIRICAL EXERCISE	
00	00000	0000000	00
DEFINITION	I: THE DYNAMICS OF LC	OG-RATIO OF PRICES (τ	-)

Model:


$$\tau_{i,j,t} = \overbrace{(\mu_{i,j,t} + C_{i,j,t})}^{D_{i,j,t}} + \overbrace{(\phi_{i,j,p}^{-1}(B)\theta_{i,j,q}(B)a_{i,j,t})}^{S_{i,j,t}}, \quad a_{i,j} \sim N(0,\sigma_{ij}) \quad \forall i,j; i \neq j$$

- Transient deterministic component to measures the convergence process, subject to $\tau_{i,j}$ is I(0):

$$C_{i,j,t} = \frac{\omega_s(B)}{\omega_r(B)} \psi_t^{t^*} = \nu(B) \psi_t^{t^*} = \sum_{k=1}^{\infty} \nu_k \psi_t^{t^*} B^k$$

- the steady-state gain (total effect) $g := \sum_{k=0}^{\infty} \nu_k = \nu(1) < 0$
- the mean lag of responses (speed of convergence, curvature): $l := \frac{\nu'(B)}{\nu(B)} \Big|_{B=1}$

FIGURE: Example of convergence path for: r = 1 and s = 0, so $\nu(B) = \omega_0/(1 - \rho_1 B)$, subject to $\omega_0 > 0$ and $0 < \rho_1 < 1$.

◆□ → ◆□ → ◆ 三 → ◆ 三 → り へ ⁰ 7/17

OUTLINE	THEORETICAL BACKGROUND	EMPIRICAL EXERCISE	
00	00000	0000000	00
Нуротне	SIS TESTING		

Hypothesis testing for PCM:

$$\tau_{ijt} = \underbrace{\mu_{ij}}^{D_{ijt}} + C_{ijt} + \phi_{ijp}^{-1}(B)\theta_{ijq}(B)a_{ijt}, \quad a_{ij} \sim N(0, \sigma_{ij}) \quad \forall i, j; i \neq j$$

$$C_{ijt} = \sum_{k=1}^{\infty} \nu_k \psi_t^{t^*} B^k$$

Hypothesis testing for PCM: P_i , P_j are CI(1,-1)

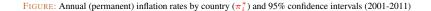
If $\tau_{i,j}$ is stationary \rightarrow PCM: H(1)

If $D_{ij} = 0$ or $D_{ij} \neq 0 \rightarrow$ absolute or relative PCM: H(2)

Hypothesis testing for PCV: if PCM

If PCM and residuals are homoskedastic + downtrend SDI (standard deviation of innovation) evolution \rightarrow PCV: H(3) (Breush and Pagan, 1979)

OUTLINE		EMPIRICAL EXERCISE	
00	00000	000000	00
EMPIRICA	AL RESULTS: P_i DYNAMICS		


Data: quaterly price level (from HCPI) for EA-11, from 2002-2011. Source: Eurostat. **The statistical model**: P_i are I(1) with an AR(1) or an AR(2) stochastic component, constant μ_i and a seasonal component. So π_i is I(0) and: $\pi_{it}^* = \lim_{k \to \infty} \mathbb{E}[\pi_{it+k} | \mathcal{F}_t] = \mu_i$ (Mean).

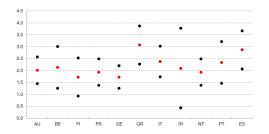

Variable	AR(1)	AF	t(2)	Mean	Resid.	ACF ⁽¹⁾	SF ⁽²⁾	GLR ⁽³⁾
(Mnemonics)	$\hat{\phi}_{11}$	$\hat{\phi}_{12}$	$\hat{\phi}_{12}$	(s.e.)	Std.Dev.	$Q_{(9)}$	$H_0 : \phi_{11} = 1$	$H_0 : \theta = 1$
	(s.e.)	(s.c.)	(s.e)	(%)	(%)			
Austria	0.26	-	-	0.50	0.35	14.8	14.8**	0.0
(AU)	(0.14)			(0.07)				
Belgium	0.43	-	-	0.53	0.42	14.5	11.5**	0.0
(BE)	(0.14)			(0.11)				
Findland	0.38	-	-	0.43	0.38	16.7	11.7**	0.2
(FI)	(0.14)			(0.10)				
France	0.31	-	-	0.48	0.31	16.4	14.6**	0.0
(FR)	(0.14)			(0.07)				
Germany	0.24	-	-	0.43	0.31	8.3	17.2**	0.0
(DE)	(0.15)			(0.06)				
Greece	0.34	-	-	0.76	0.45	15.3	13.2**	0.0
(GR)	(0.14)			(0.10)				
Italy	0.44	-0.47	0.41	0.59	0.32	11.7	7.7**	0.0
(IT)	(0.20)	(0.20)	(0.18)	(0.08)				
Ireland	0.73	-	-	0.52	0.39	18.6	2.2**	0.2
(IR)	(0.10)			(0.21)				
Netherlands	-	0.54	-0.67	0.48	0.34	15.1	5.8**	0.0
(NT)		(0.16)	(0.13)	(0.07)				
Portugal	0.38	-	-	0.58	0.58	5.3	12.8**	0.0
(PT)	(0.18)			(0.11)				
Spain	0.35	-	-	0.71	0.45	6.8	13.4**	0.1
$(\hat{E}S)$	(0.15)			(0.10)				
/								

TABLE: Estimated univariate price models (Quartely Prices in Log Differences)

Notes: (1) Q is the Ljung and Box (1978) statistic for the autocorrelation function (ACF). H_0 is that there is no autocorrelation in the first nine lags. (2) SF: Shin and Fuller (1998) statistic tests whether an AR(1) operator is nonstationary. We estimate an alternative ARIMA(3,0,1) model and test the null hypothesis. (3) GLR: Generalized Likelihood Ratio (GLR) test of Davis, Chen and Duismuir (1995) for the null hypothesis of noninvertibility of an MA(1) operator, if a second difference and a MA(1) operator to control over-differentiation are added

- Significant differences in inflation volatility across some countries (CI widths), as the case of IR.
- On average, inflation reached values below 2% inflation in this time, with the exception of Greece and Spain (low initial price levels), who reported higher values, at 95% confidence. However, is there convergence in prices/inflation over this period? How did we ended in 2011 with respect to the initial point? PCM, PCV

00	00000	000000	00			
OUTLINE		EMPIRICAL EXERCISE				

EMPIRICAL RESULTS: HYPOTHESIS TESTING

- (A) $\tau_{i,j}$ is stationary
 - Testing **Relative PCM** by pairs. H(1): τ_{ij} is stationary (SF Unit Root test, if red we reject H_0 : non-stationarity at 95% (**) and 90% (*) confidence level.)

	DE	AU	BE	FI	FR	GR	IR	IT	NT	РТ	ES
DE	-	0.0	0.0	0.0	1.8**	4.7**	0.4	1.8**	0.0	1.8**	4.1**
AU	0.0	-	5.5**	0.0	0.3	2.2**	0.4	3.8**	0.0	0.0	2.0**
BE	0.0	5.5**	Х	0.1	0.0	2.5**	0.0	1.3*	0.0	0.0	0.0
FI	0.0	0.0	0.1	_	0.0	0.5	0.0	0.0	0.0	0.3	0.0
FR	1.8^{**}	0.3	0.0	0.0	-	4.8**	0.1	2.6**	2.9**	2.7**	1.5*
GR	4.7**	2.2**	2.5**	0.5	4.8**	Х	2.5**	4.1**	4.8**	0.8	1.3*
IR	0.4	0.4	0.1	0.0	0.1	2.5**	-	0.0	0.0	0.0	0.0
IT	1.8**	3.8**	1.3*	0.0	2.6**	4.1**	0.0	-	9.5**	0.9	2.0**
NT	0.0	0.0	0.0	0.0	2.9**	4.8**	0.0	9.5**	-	1.4*	3.8**
PT	1.8**	0.0	0.0	0.3	2.7**	0.8	0.0	0.9	1.4*	-	1.9**
ES	4.1**	2.0**	0.0	0.0	1.5*	1.3*	0.0	2.0**	3.8**	1.9**	-

Interpretation: DE (FR) numerarie, *relative PCM* no rejected with: FR, GR, IT, PT, ES (DE, GR, IT, PT, ES, NT)

◆□▶ ◆母▶ ◆ ヨ▶ ◆ ヨ▶ ヨー のへで 11/17

OUTLINE		EMPIRICAL EXERCISE	
00	00000	0000000	00

EMPIRICAL RESULTS: HYPOTHESIS TESTING

(B) Test for the **stability of the convergence operator** in C_{ijt} ($H_0: \rho_1 = 1$ vs. $H_0: \rho_1 < 1$) only for those relative prices with PCM (transition-stationary)

	DE	AU	BE	FI	FR	GR	IR	IT	NT	РТ	ES
DE	-	-	-	_	3.4**	0.0	-	1.7**	-	4.6**	8.8**
AU	-	-	0.0	_	-	0.0	-	4.5**	-	-	6.9**
BE	-	0.0	-	-	-	2.2**	-	2.7**	-	-	-
FI	-	-	-	-	-	-	-	-	-	-	-
FR	3.4**	-	-	-	-	0.0	-	0.0	0.0	2.5**	0.0
GR	0.0	0.0	2.2**	-	0.0	-	0.0	0.0	0.0	-	0.0
IR	-	-	-	-	-	0.0	-	-	-	-	-
IT	1.7**	4.5**	2.7**	-	0.0	0.0	-	-	0.0	-	0.0
NT	-	-	-	-	0.0	0.0	-	0.0	-	0.6	4.5**
PT	4.6**	-	-	-	2.5**	-	-	-	0.6	-	0.0
ES	8.8**	6.9**	-	-	0.0	0.0	-	0.0	4.5**	0.0	-

Interpretation: DE (FR) numerarie, there is an evidence of a stable convergence path (reject H_0 in favor of H_1) with FR, IT, PT, ES (DE, PT) during this period of time. *We continue the tests* on *PCM and PCV for these pairs*.

◆□▶ ◆母▶ ◆ ヨ▶ ◆ ヨ▶ ヨ の Q @ 12/17

OUTLINE	THEORETICAL BACKGROUND	EMPIRICAL EXERCISE	CONCLUDING REMARKS
00	00000	0000000	00

EMPIRICAL RESULTS: HYPOTHESIS TESTING

(C) Testing for absolute PCM ($H_0: \tau_{ij}^* = g_{ij} + \mu_{ij} = 0$ vs $H_1: \tau_{ij}^* \neq 0$). t-student and LR.

	DE	AU	BE	FI	FR	GR	IR	IT	NT	РТ	ES
DE	-	-	-	-	-0.00	-	-	-0.30	-	-17.40**	-10.10**
AU	-	-	-	-	-	-	-	-1.20**	-	-	-8.30**
BE	-	-	-	-	-	-8.40**	-	-1.70**	-	-	-
FI	-	-	-	-	-	-	-	-	-	-	-
FR	0.00	-	-	-	-	-	-	-	-	-17.90**	-
GR	-	-	8.40**	-	-	-	-	-	-	-	-
IR	-	-	-	-	-	-	-	-	-	-	-
IT	0.30	1.20**	1.70**	-	-	-	-	-	-	-	-
NT	-	-	-	-	-	-	-	-	-	-	-8.90**
PT	17.40**	-	-	-	17.90**	-	-	-	-	-	-
ES	10.10**	8.30**	-	-	-	-	-	-	8.90**	-	-

Panel A: Long Run Gap Estimation Results and t-student test for convergence in mean¹

Notes: (1) The Tau test is a student-t test of Asymptotic Price Convergence in Mean, where $H_0: \tau_{ij}^* = g_{ij} + \mu_{ij} = 0$ is that the long run gap between nominal prices is zero. Only the long-run gap estimation is presented when convergence is accepted, otherwise (-) no evidence of convergence was found. * (**)Rejects the null hypothesis at the 10% (5%) level.

- Evidence of **absolute PCM** only between **FR and DE** (in line with economic theory) and **DE and IT** in this period of time. *Evidence of steady-state convergence in prices and inflation for FR and IT with respect to DE*.
- The rest of country-pairs show relative PCM. Evidence of catching-up convergence.

OUTLINE THEORETIC 00 00000

HEORETICAL BACKGROUND

EMPIRICAL EXERCISE

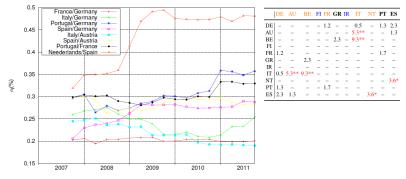
CONCLUDING REMARKS

EMPIRICAL RESULTS: CONVERGENCE SPEED ESTIMATION

(D) Convergence speed (to the new equilibrium) $\hat{l} := \frac{\nu^{\prime}(B)}{\nu(B)}\Big|_{B^{2}}$

	DE	AU	BE	FI	FR	GR	IR	IT	NT	РТ	ES
DE		-	-	-	5.90**	-	-	25.00*	-	5.60**	18.80**
AU	-	-	-	-	-	-	-	13.80**	-	-	27.40**
BE	-	-	-	-	-	33.50**	-	2.40 **	-	-	-
FI	-	-	-	-	-	-	-	-	-	-	-
FR	5.90**	-	-	-	-	-	-	-	-	8.30**	-
GR	-	-	33.50**	-	-	-	-	-	-	-	-
IR	-	-	-	-	-	-	-	-	-	-	-
IT	25.00**	13.80**	2.40 **	-	-	-	-	-	-	-	-
NT	-	-	-	-	-	-	-	-	-	-	11.50**
PT	5.60**	-	-	-	8.30**	-	-	-	-	-	-
ES	18.80**	27.40**	-	-	-	-	-	-	11.50**	-	-

Panel B: Convergence Speed Estimation Results and t-student test for significance³


- Absolute PCM: FR/DE 1/2-reached it in 1.5 years, IT/DE in 6.25 years.
- Relative PCM (n=11Y) with stable convergence operator. 1/2 of the time necessary to reach the new equilibrium.

DE: PT/DE (\approx 1.5Y) FR: PT/FR (\approx 2Y) IT: BE/IT (\approx 0.5Y), AU/IT (\approx 4Y). ES: DE/ES (\approx 5Y), AU/ES (\approx 7Y), NT/ES (\approx 3Y) GR: BE/GR (\approx 8.5Y)

OUTLINE		EMPIRICAL EXERCISE	
00	00000	000000	00
EMPIRICA	L RESULTS: HYPOTHESIS	TESTING	

(E) Testing for **PCV**. Only those with PCM (τ_{ijt} stationary)

- a_{ij} is heteroskedastic: necessary but no sufficient condition for $\lim_{k\to\infty} \sigma_{at+k} = 0$
- MA(25) for τ_{ij} standard error (downward/upward trend). $\downarrow \sigma_a$ for IT/AU (PCV)

Notes: (1) Breusch-Pagan test is a Likelihood Ratio test of Asymptotic Price Convergence in Variance, where H_0 is homoscedasticity. If the null hypothesis is rejected, there is conditional heteroscedasticity, with variance decreasing (increasing) with time starting at t^* .

(**)Rejects the null hypothesis at the 10% (5%) level.

OUTLINE		EMPIRICAL EXERCISE	CONCLUDING REMARKS		
00	00000	000000	•0		
Concluding	REMARKS				

This paper:

- Proposes a methodology based on (i) the decomposition of log-ratio of prices in permanent (D_{ijt}) and transient (S_{ijt}) components, and (ii) hypothesis testing on the model parameters.
- The methodology allows estimate (i) (permanent) inflation per each country, (ii) test PCM (absolute and relative), (iii) speed of convergence when this hold, and (iv) PCV.

Main results: 2001-2011

- 1 Inflation around 2%, above 2% for ES and GR
- 2 Absolute PCM (convergence in P and π): FR/DE, IT/DE
- 3 Relative PCM (convergence in π): PT/DE, PT/FR, BE/IT, AU/IT, DE/ES, AU/ES, NT/ES, BE/GR
- 4 Relative PCM and PCV for IT/AU

We find lack of price level convergence for some EMU countries from 2001-11, underscoring a "convergence cost" paid by countries with lower price level, that does not tend toward zero in the absence of convergence.

Our results advise using this methodology to monitoring relative and absolute price level convergence and study the monetary policy efficiency in the long run. Understand the heterogeneous impact of a coordinated monetary policy in a monetary union, and improve the policy design.

OUTLINE		EMPIRICAL EXERCISE	CONCLUDING REMARKS
00	00000	000000	0•
FUTURE WORK	(IN PROGRESS)		

Robustness checks and future research (in progress):

- (I) Sample size is not long enough. We are updating the sample to include until 2019.
- (II) There is probably a convergence in tradable goods and services, but the prices of non-tradable goods and services either do not converge, or converge more slowly. Our analysis reflects a combination of both.
- (III) More complex transition paths.

Thank you!

◆□▶ ◆母▶ ◆ ヨ▶ ◆ ヨ▶ ヨ の Q @ 17/17